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Abstract. The steady state particle size distribution is examined, resulting from a breakage
process with a maximum stable size and a homogeneous continuous kernel. The dynamic
breakage problem is transformed into one that allows direct solutions for the steady state
distribution. The latter depends on the breakage kernel and on the ratio of critical to initial
size. As this ratio goes to zero the steady state distribution approaches its limiting form
obtained by the authors previously [7]. A general theoretical analysis concerning the steady
state distribution is presented herein. The asymptotic behaviour is determined with regard
to various limits. Perturbation analysis for nearly uniform kernels reveals several interesting
features of the problem. For the general continuous kernel, the problem can be cast in a matrix
form amenable to a conventional theoretical treatment. Finally, comparisons of the new results
with existing solutions of the dynamic problem, for large times, confirm their validity.

1. Introduction

Breakage, alternatively referred to as fragmentation, is of great interest to many branches of
science and engineering. For instance some physical aspects of fragmentation are recognized
in the atomic collision cascades, in energy cascades of turbulence and in the multivalley
structure of the phase space of disordered systems. Technological aspects of fragmentation
concern mineral processing, polymer degradation and break-up of liquid droplets or air
bubbles. Even every day problems such as car parking [1] can be cast in the form of a
fragmentation problem. A rather extensive account for processes based on fragmentation
is presented by Redner [2]. The term breakage is considered synonymous to fragmentation
and used mainly in fluid processes while fragmentation refers to solids.

In many situations involving fragmentation, a critical particle sizeXm may exist below
which there is no further break-up. This is widely accepted for certain physical systems
such as the turbulent flow of liquid–liquid dispersions [3]; indeed it is considered that the
turbulent flow field cannot cause breakage of droplets below a certain size related to the
turbulent eddy structure. On the other hand, forces acting on large droplets (of size greater
thanXm) can lead to daughter particles much smaller thanXm. One may call this type
of size reductionlimited breakage. It is noted that the small cut-off size considered by
Redner [2] does not actually lead to a limited breakage mechanism because that restriction
is on the ratio of daughter to parent particle and not on the absolute size of the parent
particle. An obvious difference between continuous and limited breakage is that in the
former the particle size distribution keeps changing with time, while in the latter the process
results in a steady state. It is worth noting that the existence of a critical size in limited
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8906 M Kostoglou and A J Karabelas

breakage excludes shattering phenomena which may be important in the study of continuous
(unlimited) breakage processes.

The existence of a critical sizeXm in limited breakage, implies that all the particles in
the steady state size distribution are smaller thenXm. If only breakage takes place, this
steady state may be calledstatic, in the sense that particles smaller than the critical size
remain unchanged, and additionally it may depend in principle on the earlier states of the
system. By contrast, adynamicsteady state resulting from a combination of two or more
competing mechanisms, e.g. breakage and coalescence [4], is characterized by a ceaseless
alteration of particles. The dynamic steady state is independent of earlier states of the
system and thus from the initial conditions.

Although there is an extensive literature on the determination of the critical size for the
limited breakage, as a function of the physicochemical characteristics of the system, there
are few solutions available, mainly numerical, of the mathematical problem [5, 6]. Such
theoretical treatments may be illuminating in general, and helpful in addressing issues of
practical interest. Recently Kostoglou and Karabelas [7] showed that the steady state size
distribution for continuous homogeneous kernels takes an asymptotic form as the ratio of
critical to initial particle size approaches zero. This paper presents a significant extension
and generalization of previous work by examining the steady state size distribution with no
restriction on the value of this ratio, i.e. for finite values as well.

The structure of this paper is as follows. First (section 2) the general formulation for
the limited breakage problem is outlined. Reduction of the dynamic problem to the steady
state is analysed in section 3. Section 4 includes several asymptotic results for the steady
state size distribution and related auxiliary functions. A general perturbation analysis for a
slightly perturbed uniform kernel follows (section 5); many useful results are deduced from
this analysis. A more general class of kernels (which at least in principle represents all
continuous kernels) is treated next (section 6); there the results of the previous sections are
employed to study the approach of the steady state size distribution to its asymptotic form
(limiting steady state) as the ratio of critical to initial particle size decreases. Finally, the
direct solutions for the steady state are compared with solutions that are obtained by using
existing analyses of the dynamic unlimited breakage.

2. Mathematical formulation

The evolution of size distribution of dispersed particles for limited breakage is given by
df ′(x ′, t)

dt ′
=
∫ ∞
x ′
v′(y ′)p′(x ′, y)b′(y)f ′(y, t)dy − b′(x ′)f ′(x ′, t) x ′ > Xm (1a)

df ′(x ′, t)
dt ′

=
∫ ∞
Xm

v′(y ′)p′(x ′, y)b′(y)f ′(y, t)dy x ′ < Xm (1b)

whereXm is the critical size below which particles do not suffer breakage,t ′ time,x ′ particle
volume,f ′(x ′, t) the particle number density distribution,b′(x ′) the breakage probability of
particles of volumex ′, v′(y ′)p′(x ′, y ′) is the distribution of particles of volumex ′ resulting
from the break-up of a particle of volumey ′, v′(y ′) the number of particles resulting from
the break-up of a particle of volumey ′, andXm is the critical size below which particles
do not suffer breakage.

Let f ′0(x
′) = f ′(x ′, 0) be the initial distribution. The total volume concentration, the

total number concentration and the mean size of the initial distribution are, respectively:

M =
∫ ∞

0
xf ′0(x) dx



Theoretical analysis of the steady state particle size distribution 8907

N0 =
∫ ∞

0
f ′0(x) dx

x0 = M

N0
.

The functions and variables already introduced can be expressed in dimensionless form, as
follows:

x = x ′

x0
y = y ′

x0
τ = b′(x0) · t xm = Xm

x0
b(x) = b′(x)

b′(x0)

f (x, τ ) = x0f
′(x ′, t)
N0

p(x, y) = x0p
′(x ′, y ′) v(y) = v′(y ′)

and equations (1a, b) can be written as

df (x, τ )

dτ
=
∫ ∞
x

v(y)p(x, y)b(y)f (y, τ )dy − b(x)f (x, τ ) x > xm (2a)

df (x, τ )

dτ
=
∫ ∞
xm

v(y)p(x, y)b(y)f (y, τ )dy x < xm. (2b)

There is a large number of solutions to the above problem available for the casexm = 0.
For certain simple forms of functionsb(x) and v(y)p(x, y) analytical solutions exist
[8–10]. Similarity transformations [11–13] can be used if the above functions satisfy certain
requirements. Finally, for a general form of kernels, there are specialized numerical methods
[14] and Monte Carlo simulations [15]. Because of the linearity of the problem the solution
for an arbitrary initial distribution can be obtained from the superposition of solutions for
monodisperse initial distributions.

3. Equation for the steady state

The steady state distribution can be obtained from the solution of equations (2) in the limit
τ = ∞. Since, this method is quite impractical computationally, one may proceed in a
different way.

The following function is introduced:

L(x) = b(x)
∫ ∞

0
f (x, τ )dτ (3)

which represents the total number of particles with volumex, that suffer breakage during
the entire process. This transformation essentially eliminates the breakage frequency.

Integrating equations (2a, b) from τ = 0 to∞, one obtains

−f0(x) =
∫ ∞
x

v(y)p(x, y)L(y)dy − L(x) x > xm (4a)

fs(x) =
∫ ∞
xm

v(y)p(x, y)L(y)dy + f0(x) x < xm (4b)

wherefs(x) is the dimensionless steady state particle size distribution. The functionL(x)

depends onv(y)p(x, y) andf0(x), whereas the steady state size distributionfs(x) depends
additionally onxm. The independence of the steady state size distribution from breakage
rate suggests that a steady state exists even for rates which lead the unlimited breakage
problem to a shattering-type behaviour.

One may assume that the breakage kernel is independent of the absolute parent particle
size but that depends only on the ratiox/y. Volume conservation considerations imply
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that the kernel has the formv(y)p(x, y) = ϕ(x/y)/y. This type of kernel has been used
extensively in the literature; diverse applications include prototype models for the solution
of the breakage equation [8–13] and empirical expressions for fitting experimental data [16].
To proceed one should modify the nondimensionalization of particle volume and of steady
size distribution to render it independent of the initial distribution:

x̄ = x

xm
= x ′

Xm
f̄s(x̄) = X2

mf
′
s (x
′)

M
= x2

mfs(x). (5)

In the linear equations (4),f0(x) can be interpreted as a kind of driving force. Indeed,
considering an elementary form of the initial distribution such asf0(x) = δ(x− 1) a Green
function f̄sg(x̄; xm) results. For an arbitrary initial distributionf0(x), application of the
superposition principle leads to

f̄s(x̄) =
∫ ∞
xm

yf0(y)f̄sg

(
x̄; xm

y

)
dy + x2

mf0(x̄xm). (6)

The second term in the right-hand side of the above equation represents the part of the
initial distribution with sizes smaller thanXm, which remains unaltered during the breakage
process. In view of equation (6), it is not restrictive to assume that the initial distribution
is monodisperseδ(x−1); any result obtained with the latter can be directly generalized for
arbitrary initial distribution via equation (6). Using the monodisperse initial condition and
the new functionq(x) = L(x)− δ(x − 1), equations (4) are modified as

ϕ(x)+
∫ 1

x

1

y
ϕ(x/y)q(y) dy − q(x) = 0 (7a)

f̄s(x̄) = x2
m

∫ 1

xm

1

y
ϕ

(
x̄

y
xm

)
q(y) dy + x2

mϕ(x̄xm). (7b)

Equation (7) is a form of Volterra equation of the second kind, that can be solved using the
well known method given by Tricomi [17], i.e.

q(x) = ϕ(x)+
∫ 1

x

H(x, y)ϕ(y)dy

H(x, y) =
∞∑
n=0

An+1(x, y)

An+1(x, y) =
∫ y

x

A(x, z)An(z, y)dz n = 1, 2, 3, . . . ,∞

A1(x, y) = A(x, y) = 1

y
ϕ(x/y).

(8)

This solution is quite impractical for computations; thus it is preferable to proceed in
different ways in order to solve the equations (7) and to study the solutions.

4. General behaviour—asymptotic results

It is observed that the behaviour of the distributionf̄s(x̄) with respect to the variablexm
resembles the temporal evolution of a distribution. To demonstrate and exploit this analogy,
the new timelike variablet = − log(xm) is defined and the alternative symbolism̄fs(x̄; t)
is used to denote the functional dependence ont . The initial condition (fort = 0), easily
obtained from equation (7b), is f̄s(x̄; 0) = ϕ(x̄). As ‘time’ t increases the distribution
‘evolves’. If the functionϕ(x) is continuous in(0, 1] then, as Kostoglou and Karabelas
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[7] have shown, a limiting steady state is reached after sufficient ‘time’ has passed (i.e.
xm � 1). This final steady state is given as

f̄s(x̄;∞) = A

x̄2

∫ x̄

0
zϕ(z) dz whereA = −

(∫ 1

0
z ln(z)ϕ(z) dz

)−1

. (9)

The evolution of the distributionf̄s(x̄; t) between the initial condition and the limiting
steady state concerns the present work.

4.1. Behaviour ofq(x) for smallx

It has been shown [6] that, for continuous kernelsϕ(x), q(x) ∝ x−2 in the limit x → 0.
This behaviour creates serious difficulties in the direct numerical solution of equation (7a).
These difficulties can be easily overcome by taking into account the above behaviour to
make smooth the unknown function, i.e. by multiplication withx2.

4.2. Behaviour off̄s(x̄) for small x̄

If, in the limit x → 0, ϕ(x) ∝ xn (wheren > −2 from mass conservation considerations)
then a simple substitution into equation (7b) leads tof̄s(x̄) ∝ x̄n for x̄ → 0. This statement
can be obviously extended for every finite interval [0, a], wherea < 1, for whichϕ(x) has
a power form.

4.3. Behaviour ofq(x) for large x(x → 1)

We define the perturbation variableε = 1− x. It is interesting that the series solution (8)
converges asεn. Although this iterative solution can be used to findq(x) as a power series
of ε, there is a more systematic way, as follows. Equation (7a) can be transformed into

ϕ(1− ε)+ ε
∫ 1

0

1

1− εy ϕ
(

1− ε
1− εy

)
q(1− εy) dy − q(1− ε) = 0.

If ϕ(x) is analytical in(0, 1] then it can be written as a MacLaurin series around 1
with respect toε. Assuming thatq(1− ε) = ∑∞

i=0 qiε
i , carrying out the expansions and

integrations and equating coefficients of equal powers ofε, in the above equation, the
coefficientsqi can be found as functions of the derivatives ofϕ(x) at x = 1. The above
procedure is valid up toi = n for kernels with continuous derivatives up tonth order. The
result for the zero- and first-order term of this expansion is

q(1− ε) = ϕ(1)+ (ϕ2(1)− ϕ′(1))ε. (10)

4.4. Behaviour off̄s(x̄; t) for small t

If ε = 1− xm = 1− e−t , equation (7b) can be transformed in the form

f̄s(x̄) = (1− ε)2ε
∫ 1

0

1

1− εy ϕ
[
x̄(1− ε)
1− εy

]
q(1− εy) dy + (1− ε)2ϕ(x̄(1− ε)).

For ϕ(x) analytical in (0, 1] the terms of the above equation can be expanded in power
series ofε. Using the series forq(x) referred to above, after integration and collection of
terms of the same order, a result of the following type is obtained

f̄s(x̄) =
∞∑
i=0

f̄i(x̄)ε
i
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where the functionsf̄i(x̄) are combinations of the derivativesϕ(j)(x̄) andϕ(j)(1) for j < i.
This procedure is valid up toi = n for a kernelϕ(x) with derivatives continuous up tonth
order. The result for the zero-, first- and second-order terms of the expansion is

f̄s(x̄) = ϕ(x̄)+ [ϕ(x̄)ϕ(1)− 2ϕ(x̄)− ϕ′(x̄)]ε +
[
ϕ(x̄)

(
ϕ2(1)

2
− ϕ

′(1)
2
− 3ϕ(1)

2
+ 1

)
+x̄ϕ′(x̄)

(
ϕ(1)

2
+ 2

)
+ 1

2
x̄2ϕ′′(x̄)

]
ε2. (11)

5. Analysis for nearly uniform binary breakage

A case of theoretical interest is the binary breakage with nearly uniform kernel. It means
that some pairs of daughter particles appear with slightly larger probabilities than others.
The nearly uniform breakage kernel has the following form

ϕ(z) = 2(1+ ερ(z)) (12)

whereρ(z) is of order 1 andε � 1. To meet the requirements of binary breakage and mass
conservation the functionρ(z) must have the following properties:

(i) ρ(z) = ρ(1− z)

(ii)
∫ 0.5

0
ρ(z) dz = 0.

(13)

For ε < 1 the seriesq(x) =∑∞i=0 ε
iq(i)(x) converges. The functionsq(i)(x) are unknown

and must be computed from equation (7a). Substituting the above series in equation (7a)
and collecting terms of equal powers ofε, the following hierarchy of equations is obtained:

2+
∫ 1

x

2

y
q(0)(y) dy − q(0)(x) = 0 for i = 0 (14a)

2ρ(x)δ(i − 1)+
∫ 1

x

[
2

y
q(i)(y)+ 2

y
ρ

(
x

y

)
q(i−1)(y)

]
dy − q(i)(x) = 0 (14b)

for i = 1 to∞.
Equation (14a) corresponds to the case of uniform breakage (reference state) and has

the simple solutionq(0)(x) = 2x−2. This relation is substituted in the first(i = 1) of
equations (14b); then, equations (14b) are differentiated with respect tox and the following
linear differential equations result(i = 1, 2, . . . ,∞):

q ′(i)(x)+
2

x
q(i)(x)− 2ρ ′(x)δ(i − 1)+ 2

x
ρ(1)q(i−1)(x)−

∫ 1

x

2

y2
ρ ′
(
x

y

)
q(i−1)(y) dy = 0.

(15)

The initial conditions for these equations are easily determined from equations (14b) in the
limit x = 1; i.e.q(i)(1) = 2ρ(1)δ(i−1). Integration of equations (15) with the above initial
conditions leads to

q(1)(x)= 2

x2

[
ρ(1)− 2ρ(1) log(x)−

∫ 1

x

y2ρ ′(y) dy − 2
∫ 1

x

∫ 1

z

z2

y4
ρ ′
(
z

y

)
dy dz

]
i = 1 (16a)

q(i)(x)= 2

x2

[∫ 1

x

yρ(1)q(i−1)(y) dy −
∫ 1

x

∫ 1

z

z2

y2
ρ ′
(
z

y

)
q(i−1)(y) dy dz

]
i = 2 to∞.

(16b)
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q(1)(x) is given directly as a function of kernel by equation (16a).
The other functionsq(i)(x)(i > 2) must be successively computed from equations (16b).

Another interesting quantity is the coefficientC that is the limit ofx2q(x) asx → 0. For
the kernel (12) it can be expanded as a perturbation seriesC = 2(1+∑∞i=1Ciε

i). The
coefficientC1 can be determined from equation (16a) by taking the limitx = 0. After
considerable algebra and using the identity

∫ 1
0 y

2ρ ′(y) dy = ρ(1), which stems from the
mass conservation property of the kernel, the following remarkably simple relation for the
coefficientC1 results

C1 =
∫ 1

0
y log(y)ρ(y) dy. (17)

A perturbation expansion for the steady state size distributionf̄s(x̄) =
∑∞

i=0 ε
i f̄s(i)(x̄)

also converges. After substitution of the kernel (12) and the series expansions ofq(x) and
f̄s(x̄) into equation (7b) the following result for the functions̄fs(i)(x̄) is obtained:

f̄s(0)(x̄) = 2 i = 0 (uniform breakage) (18a)

f̄s(1)(x̄) = 2x2
m

[∫ 1

xm

(
1

y
q(1)(y)+ 2

y3
ρ

(
x̄

y
xm

))
dy + ρ(x̄xm)

]
i = 1 (18b)

f̄s(i)(x̄) = 2x2
m

∫ 1

xm

(
1

y
q(i)(y)+ 1

y
ρ

(
x̄

y
xm

)
q(i−1)(y)

)
dy i = 2 to∞. (18c)

As outlined above, the functionsq(i)(x) are determined from equations (16).
There is another more convenient way to compute the first-order perturbation function

for the steady statēfs(1)(x̄) with no need for an auxiliary functionq(1)(x). Mass conservation
requires that ∫ 1

0
x̄f̄s(i)(x̄) dx̄ = 0 for i = 1 to∞. (19)

Equation (18b) is substituted in equation (19) to obtain∫ 1

xm

1

y
q(1)(y) dy = −4

∫ 1

0

∫ 1

xm

x̄

y3
ρ

(
x̄

y
xm

)
dy − 2

∫ 1

0
x̄ρ(x̄xm) dx̄. (20)

Combining equations (18b) and (20) the final result for the first-order perturbation steady
state size distribution is given as

f̄s(1)(x̄) = 2x2
m

[ ∫ 1

xm

2

y3
ρ

(
x̄

y
xm

)
dy + ρ(x̄xm)− 4

∫ 1

0

∫ 1

xm

x̄

y3
ρ

(
x̄

y
xm

)
dy dx̄

−2
∫ 1

0
x̄ρ(x̄xm) dx̄

]
. (21)

The significance of this equation is that it relates the steady state directly with the kernel,
with no need for an elaborate auxiliary functionq(1)(x) as in equation (18b). The above
procedure can be extended for arbitraryi but the only advantage in this case is the reduction
of order of dependence of̄fs(i)(x̄), i.e. fromq(i)(x) to q(i−1)(x):

f̄s(i)(x̄) = 2x2
m

[∫ 1

xm

1

y
ρ

(
x̄

y
xm

)
q(i−1)(y) dy − 2

∫ 1

0

∫ 1

xm

x̄

y
ρ

(
x̄

y
xm

)
q(i−1)(y) dy dx̄

]
. (22)
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Table 1. First-order perturbationC1 of the limx=0[x2q(x)] for a n/2 period cosine perturbation
of the uniform kernel.

n C1

2 0.247
4 0.078 9
6 0.039 6
8 0.024 1

10 0.016 3
12 0.018 4
20 0.004 78
30 0.002 30
40 0.001 37
50 0.000 91

5.1. Results for harmonic perturbation

In order to obtain numerical results, a specific kernelρ(z) has to be assumed. For example,
the harmonic functionρ(z) = cos(nπz) is used here withn = 2, 4, 6, . . . . The major
advantage of this particular form is that every kernel can be expanded in a Fourier series as

ρ(z) =
∞∑
i=1

ai cos(inπz). (23)

If the first-order perturbation functions for the simple harmonic kernel areq(1)(x, n) and
f̄s(1)(x̄, n), the corresponding functions for the general kernel (23) are, respectively,

q(1)(x) =
∞∑
i=1

aiq(1)(x, in) f̄s(1)(x̄) =
∞∑
i=1

aif̄s(1)(x̄, in). (24)

For the caseρ(z) = cos(nπz) the coefficientC1 (equation (17)) is given as

C1 =
∫ 1

0
z log(z) cos(nπz) dz. (25)

Values ofC1 which are obtained by numerical integration of the integral in equation (25)
for severaln values are shown in table 1. ObviouslyC1 is a decreasing function ofn which
means that asn increases the asymptotic behaviour ofq(x) for x → 0 gets closer to that
of the unperturbed kernel.

Substitution of the particular kernel into equation (18b) leads to the following result for
the steady state size distribution

f̄s(1)(x̄, n) = 4 cos(nπx̄)

(nπx̄)2
− 4 cos(nπx̄xm)

(nπx̄)2
+ 4 sin(nπx̄)

nπx̄
− 4xm sin(nπx̄xm)

nπx̄
+ 4

(nπ)2

− 8

(nπ)2

∫ 1

0

cos(nπy)− cos(nπyxm)

y
dy − 4 cos(nπxm)

(nπ)2
− 4xm sin(nπxm)

nπ

+2x2
m cos(nπx̄xm). (26)

By taking the limit of this equation atxm = 0 the limiting steady state size distribution
results

f̄s1(1)(x̄, n) = 4(cos(nπx̄)− 1)

(nπx̄)2
+ 4 sin(nπx̄)

nπx̄
− 8

(nπ)2

∫ 1

0

cos(nπy)− 1

y
dy. (27)
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Figure 1. First-order perturbation of the steady state distributionf̄s(1)(x̄) for a one period
(n = 2) cosine perturbation of the uniform kernel, for severalxm values.

Figure 2. First-order perturbation of the steady state distributionf̄s(1)(x̄) for a two period
(n = 4) cosine perturbation of the uniform kernel, for severalxm values.

A confirmation of the correctness of the entire procedure is that exactly the same result
is obtained by substituting the kernel into equation (9) that gives directly the limiting steady
state, and expanding the denominator with respect toε. The perturbationf̄s(1)(x̄) in the
steady state size distribution forn = 2 andn = 4 is shown in figures 1 and 2, respectively,
for severalxm values. In both cases the limiting steady state is practically reached for
xm = 0.2.
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6. Analysis for the sum of powers kernel

The sum of powerstype of kernel comprises a very important class of breakage kernels.
The functional form of these kernels is

ϕ(z) =
n∑
i=1

ciz
ki (28)

whereki ∈ (−2,∞) andci ∈ R∗. Of course the coefficientsci must be such as to conserve
the total mass, that is

∑n
i=1

ci
ki+2 = 1. There is a variety of members in this family, from

purely empirical kernels that closely fit experimental data [16] to theoretical kernels that
admit analytical solutions of the breakage equation (1) [8–10, 13]. Also the entire spectrum
of kernels presented by Hill and Ng [18], based on the statistics of multiple breakage, can
be written in the above form. In fact, (at least in principle) any kernel continuous in(0, 1]
can be cast in this form provided thatn is large enough (see the appendix). A very efficient
method for the computation of the steady state size distribution for kernels of the above
type will be given next. The kernel substituted into the equation (7b) for the steady state,
after some algebra, leads to

f̄s(x̄) =
n∑
i=1

cix
ki+2
m

∫ 1

xm

y−ki−1q(y) dyx̄ki +
n∑
i=1

cix
ki+2
m x̄ki .

This result can be simplified as

f̄s(x̄) =
n∑
i=1

ci x̄
ki [xki+2

m (Mi + 1)] =
n∑
i=1

ci x̄
ki Fi (29)

whereMi =
∫ 1
xm
y−ki−1ϕ(y) dy andFi = xki+2

m (Mi + 1).
It is obvious that the steady state size distribution has exactly the same form as the

kernel. Consequently, any singularity of the kernel atz = 0 can be transferred analytically
to the steady state size distribution. This fact is very important for singular kernels (even
practical kernels can be singular atz = 0 [16]) for which the direct numerical solution for
the steady state size distribution is difficult. Thus, the problem of computing the steady state
distribution is reduced to determining the weightsFi(i = 1, 2, . . . , n) which are functions
of xm. To proceed in this way, the kernel is substituted in equation (7a). After some algebra
(using the definition ofMi) the following result is obtained:

q(x) =
n∑
i=1

cix
ki (Mi + 1). (30)

Taking into account thatq(x) = −xki+1 dMi

dx , for i = 1 ton, a system of differential equations
results

dMi

dx
= −

n∑
j=1

cjx
ki+kj−1(Mj + 1) i = 1 to n. (31)

Finally, by employing the relation betweenMi and Fi , and the timelike variablet , the
system of differential equations for theFi ’s is reduced to the following very simple form:

dFi
dt
=

n∑
j=1

cjFj − (ki + 2)Fi i = 1 to n. (32)

For t = 0 the steady state distribution coincides with the kernel; thus the initial condition
for the above system isFi(0) = 1 for i = 1 to n. The weights of the limiting steady
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state distributionFi(∞) can be obtained from the solution of the system of linear algebraic
equations that result by setting the derivatives in equations (32) equal to zero. The solution
to this system isFi = U/(ki + 2), whereU is an arbitrary constant because the system is
homogeneous. The constantU is specified to conserve the total mass of the system and the
final result for the weights of the limiting steady state size distribution is given as

Fi = 1

ki + 2

( n∑
j=1

cj

(kj + 2)2

)−1

. (33)

Exactly the same result is obtained by using equation (9) that directly provides the limiting
steady state size distribution.

The system of linear differential equations with the given initial condition has the
following solution [19]

Fi =
n∑
j=1

dije
λj t =

n∑
j=1

dij x
−λj
m wheredij =

n∑
k=1

wijvjk (34)

i = 1, . . . n andj = 1, . . . n.
In the above equationsλi is the eigenvalues,wij are the elements of the eigencolumn

matrix and vij are the elements of the eigenrow matrix, of a matrixA with elements
aij = ci − (ki + 2)δij whereδij is the Kronecker delta. An alternative way to solve the
system is direct numerical integration. Advantages of the latter include that it is very easy to
implement and the fact that a numerical integration reproduces all the steady states between
the initial and final value ofxm.

For the significant case corresponding ton = 2 a very simple solution results

F1 = 1+ (x
α
m − 1)

α
(k1+ 2− c1− c2)

F2 = 1+ (x
α
m − 1)

α
(k2+ 2− c1− c2)

(35)

whereα = k1+ k2+ 4− c1− c2.
Numerical results will be presented here for two general types of kernels, which are

representative of binary breakage. These cases are a subset of the general kernels for
multiple breakage given in [18]. The forms employed are simple substitutes for the two
kernels (for binary breakage) widely used in practical cases, i.e. the normal distribution
kernal and the U-shaped one [6].

(i) Product kernel(m = 0, 1, 2, . . .)

ϕ(z) = 2(2m+ 1)!

(m!)2
zm(1− z)m. (36)

This kernel is uniform form = 0. For other values ofm it has a form similar to that of
the well known normal distribution-type kernel [20–21]. The exponentm is related to the
inverse of the standard deviation of the normal-shaped kernel. In the limitm → ∞ this
kernal tends to the equal size breakage form [22]. The interpretation of the above kernel in
terms of the general form (28) givesn = m+ 1, ki = m+ i − 1 and

ci = 2(−1)i−1(2m+ 1)!

m!(i − 1)!(m− i + 1)!
for i = 1 tom+ 1.

(ii) Sum kernel(m = 1, 2, 3, . . .)

ϕ(z) = (m+ 1)[zm + (1− z)m]. (37)
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Figure 3. Steady state size distribution̄fs(x̄) for the power-type kernel (equation (36)) with
m = 5, for severalxm values.

This kernel is uniform form = 1. For other values ofm it has a U-shaped form. As
m increases the kernel tends to represent an ‘erosive’ behaviour, i.e. preference for two
daughter particles with very different sizes.

The interpretation of this kernel in terms of the general form (28) givesn = m + 1,
ki = i − 1, ci = (−1)i (m+1)m!

(i−1)!(m−i+1)! for i = 1 tom andcm+1 = (m+ 1)(1+ (−1)m).
Using the values ofki and ci for the above two kernels, the system of differential

equations (32) is solved numerically using a Runge–Kutta integrator with prespecified
accuracy and adjustable step [23]. The steady state size distributions for the product and
sum kernels withm = 5 are shown in figures 3 and 4, respectively, for differentxm values.
Interestingly, for the power kernel the limiting steady state is practically reached even for
xm = 0.5.

7. Approach to the limiting steady state

As outlined above, the steady state size distribution reaches an asymptotic form asxm tends
to zero which is called the limiting steady state. An interesting question is at which value
of xm the limiting steady state is attained. Here this issue is examined by employing the
analysis of the previous sections for the steady state distribution. First, the perturbed cosine
kernel is studied. A very sensitive measure for the deviation between ‘transient’ steady
state and limiting steady state is the value atx̄ = 1, as can be seen in figures 1 and 2. The
perturbation of the steady state is determined from equation (26) in the limitx̄ = 1

f̄s(1)(1) = 8

(nπ)2
− 8 cos(nπxm)

(nπ)2
− 8

(nπ)2

∫ 1

0

cos(nπx)− 1

x
dx + 2x2

m cos(nπxm). (38)

The above quantity is plotted in figure 5 versus the timelike variablet = log(1/xm).
These curves closely resemble the response of an overdamped dynamic system [24] to
an external disturbance; i.e. with increasingn the amplitude of the oscillations decreases
whereas the ‘time’, until the limiting steady state is reached, increases.
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Figure 4. Steady state size distribution̄f (x̄) for the sum-type kernel (equation (37)) withm = 5,
for severalxm values.

Figure 5. First-order perturbation of the steady state distributionf̄s(1) (1) for an n/2 period
cosine perturbation of the uniform kernel, versus artificial time for severaln values.

In the following, the more general sum of powers kernel will be examined as regards
the approach to the limiting steady state. As already discussed, the weights of the steady
state distribution are given by a relation of the form

Fi =
n∑
k=1

dikx
−λk
m . (39)

One of the eigenvaluesλk of the matrixA must be zero (let us sayλ1 = 0) to account for
the limiting steady state. On physical grounds it is expected that the remaining eigenvalues
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Table 2. Exponentβ of the approach to the limiting steady state for the generalized product
kernel (equation (36)) for severalm values.

m β

1 7
2 7.5
3 6.5
4 5.5
5 4.75
6 4.15
7 3.66

Figure 6. Exponentβ of the approach to the limiting steady state for the generalized sum kernel
(equation (37)) versusm.

would be real and negative. The approach to the steady state is determined by the smallest
(in absolute value) eigenvalue. Summarizing, for the sum of powers kernel

fs(x̄)− fsl(x̄) ∝ xβm (40)

whereβ = |λ2| andλ2 is the smallest, in absolute value, non-zero eigenvalue of the matrix
A. For example, let us explore the case of product kernel. The matrixA is constructed as
outlined in the previous section. A QR decomposition algorithm [25] is used to compute
the eigenvalues of matrixA. The values of the exponentβ for severalm values are given
in table 2. Due to the form of matrixA for this particular kernel (very large values ofci)
the algorithm with double precision becomes inaccurate form > 7. This is why the direct
numerical integration of the system of differential equations is indispensable in some cases.
As can be seen in table 2, the exponentβ is reduced with increasingm. The high value
of β for m = 5 explains why the limiting steady state size distribution is reached even for
xm = 0.5 in the example shown in figure 5. In figure 6 the exponentβ for the case of
sum (erosion) kernel is plotted versusm. A nearly perfect fit to the points form > 10 is
β = 6.132m−0.775. This relation can be used for the computation of the rate of approach
exponent for very largem values (extremely ‘erosion’-type kernels).

In both cases (product and sum kernels), withm increasing (kernel becoming steeper)
the exponentβ decreases. A generalization of this is the statement that as the kernel
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becomes steeper (the maximum derivative increasing) the approach to the limiting steady
state is ‘delayed’. In the limit of a kernel with infinite steepness (discontinuous kernel) the
exponentβ tends to zero and consequently there is no limiting steady state size distribution,
as is also pointed out elsewhere [7].

8. Comparisons with other methods

In this section the steady state size distribution obtained here will be compared with those
resulting from analytical solutions of theunlimited breakage equation. If the solution of the
unlimited breakage problem isf (x, τ ), the steady state distribution for limited breakage is
given as

df (x, τ )

dτ
=
∫ 1

xm

1

y
b(y)ϕ(x/y)f (y, τ )dy for 0< x < xm (41a)

f̄s(x̄) = x2
mf (x̄xm,∞). (41b)

A well known analytical solution to the breakage problem exists for the simple power-law
kernel (product kernel (36) form = 1) [10]. In this case the steady state can be trivially
obtained without resorting to the exact form of the analytical solution. Indeed, the power
form of the steady state distribution is obvious from equations (41) whereas the coefficients
of the power term can be determined simply by mass conservation considerations without
employingf (x, τ ).

A much more elaborate case [13] is for the kernel

ϕ(z) = δλ

δ − λ(z
λ−2− zδ−2) (42)

with b(x) = xλ.
Obviously this kernel is of the sum of powers type (28) withk1 = λ − 2, k2 = δ − 2,

c1 = −c2 = δλ/(δ − λ). The closed-form transient solution with this kernel is [13]

f (x, τ ) = e−τ δ(x − 1)+ λδτxδ−2
∫ 1

x

yλ−δ−1e−τy
λ

dy. (43)

Substituting the above transient solution into equation (41a) and performing the integration
from τ = 0 to τ = ∞, with the initial conditionf (x, 0) = 0, one obtains

fs(x) = λδ

δ − λ(x
λ−2− xδ−2)+ (λδ)2

δ − λ
×
[
xλ−2

∫ 1

xm

∫ 1

z

zδ−1y−λ−δ−1 dy − xδ−2
∫ 1

xm

∫ 1

z

zλ−1y−λ−δ−1 dy

]
. (44)

Carrying out the double integration and using relation (41b) leads to

f̄s(x̄) = λδ

δ − λ
(
λxλ+δm

λ+ δ +
δ

λ+ δ
)
x̄λ−2− λδ

δ − λ
(
δxλ+δm

λ+ δ +
λ

λ+ δ
)
x̄δ−2. (45)

This is exactly the result obtained independently with the direct method for the steady state
distribution, i.e. equations (29) and (35) with the relevant values ofk1, k2, c1, c2.
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9. Conclusions

A theoretical study is presented of the steady state size distribution resulting from a limited
breakage process with kernels homogeneous and continuous (except possibly atx = 0).
It is shown that, due to the linearity of the problem, the steady state for an arbitrary
initial distribution can be obtained by superposition of the steady states resulting from
monodisperse initial conditions. The steady state distribution depends only on the kernel
and the ratio of critical to initial size. As this ratio decreases, the steady state distribution
evolves from its initial form (the same as the kernel) to thelimiting one that has already
been studied [7].

The asymptotic behaviour of the steady state distribution and of the auxiliary function
used in its evaluation is given in this work for several limits. Knowledge of this behaviour
can lead to a great simplification of the numerical solution for the steady state distribution.
A perturbation analysis for nearly uniform kernels reveals features of the steady state
distribution not accessible otherwise. It is shown that any continuous in(0, 1] kernel
can be cast in the ‘sum of powers’ form. In such a case the steady state distribution has
the same form with the kernel but with a different weighting factor for each term of the
sum. These factors are obtained from the solution of a homogeneous system of linear
differential equations with constant coefficients. The analytical treatment presented herein
allows one to study several interesting features of the problem; for example, the approach
to the limiting steady state is found to be determined by the smallest eigenvalue of a certain
matrix. Furthermore, with this treatment it is possible to obtain results for kernels so stiff
that they cannot be handled numerically. Finally, it is shown that the direct computation
of the steady state distribution provides exactly the same result as that obtained from the
dynamic problem (as time goes to infinity) but in a more formal and easy way.

Appendix

Let ϕ(x) be a kernel continuous in(0, 1]. In generalϕ(x) has a singularity of order
ν(ν > −2) at x = 0. If k 6 ν, one can writeϕ(x) = xkξ(x) where ξ(x) is now
continuous in [0, 1]. The Weierstrass theorem [26] guarantees that there is a polynomial
Pn(x) of sufficiently high degreen that |ξ(x) − Pn(x)| < ε for any value ofx in [0, 1],
whereε is an arbitrarily small number. Thus, one can use the formsξ(x) = ∑n

i=0 aix
i

andϕ(x) = ∑n
i=0 aix

i+k. It is recognized that the general kernelϕ(x) is cast in the form
of equation (28). The proper way for evaluating the coefficientsai of this approximation
is through the use of orthogonal polynomials. Especially for Legendre polynomials these
coefficients are simple linear combinations of the moments ofξ(x).
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